
Theory of the ordered phase in A-site antiferromagnetic spinels

SungBin Lee
Department of Physics, University of California–Santa Barbara, Santa Barbara, California 93106-9530, USA

Leon Balents
Kavli Institute for Theoretical Physics, University of California–Santa Barbara, Santa Barbara, California 93106-9530, USA

�Received 30 August 2008; published 22 October 2008�

Insulating spinel materials, with the chemical formula AB2X4, behave as diamond lattice antiferromagnets
when only the A-site atom is magnetic. Many exhibit classic signatures of frustration, induced not geometri-
cally but by competing first- and second-neighbor exchange interactions. In this paper, we further develop a
theory �D. Bergman et al., Nat. Phys. 3, 487 �2007�� of the magnetism of these materials, focusing on the
physics observable within the ordered state. We derive a phenomenological Landau theory that predicts the
orientation of the spins within incommensurate spiral ordered states. It also describes how the spins reorient in
a magnetic field and how they may undergo a low-temperature “lock-in” transition to a commensurate state.
We discuss microscopic mechanisms for these magnetic-anisotropy effects. The reduction in the ordered
moment by quantum fluctuations is shown to be enhanced due to frustration. Our results are compared to
experiments on MnSc2S4, the best characterized of such A-site spinels, and more general implications are
discussed. One prediction is that magnetically induced ferroelectricity is generic in these materials, and a
detailed description of the relation of the electric polarization to the magnetism is given.
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I. INTRODUCTION

Frustrated magnets, in which competing exchange inter-
actions cannot be simultaneously minimized, have long been
a subject of theoretical and experimental study. Fundamental
interest in them comes from their tendency to show more
pronounced effects of fluctuations than their unfrustrated
counterparts, and from prospects of observing exotic ground
states as a consequence of frustration-induced sensitivity to
weak perturbations. From a more practical materials science
perspective, they are of particular recent interest because
they tend to display noncollinear magnetic ordering. Such
noncollinear ordering is quite generally connected to mag-
netically induced ferroelectricity,1 making frustrated magnets
a rich and productive hunting ground for multiferroics. In
this paper, we study a particular class of frustrated spinel
materials, with the chemical formula AB2X4, in which only
the A atom is magnetic. Such materials are described as an-
tiferromagnets on the diamond lattice. Somewhat surpris-
ingly, although the diamond lattice is not geometrically frus-
trated and admits a simple two-sublattice collinear Néel
state, many of these A-site magnetic spinels do exhibit sig-
nificant signs of frustration. This includes a large ratio �“frus-
tration parameter”2� f = ��CW� /Tc between the Curie-Weiss
temperature �CW and an ordering or freezing temperature Tc.
For example, experiments find f �10–20 in CoAl2O4,3,4 and
f �12 in MnSc2S4.5 A recent theoretical study attributed this
to the competition between first- and second-neighbor ex-
change interactions, J1 and J2, which can be comparable in
these materials.6 Theoretically, for J2 /J1�1 /8, the classical
ground state becomes highly degenerate, consisting of copla-
nar spirals whose wave vector can be arbitrarily chosen on
some “spiral surface” in momentum space. This degeneracy
was suggested to be responsible for the observed signs of
frustration, including large f , prominent diffuse neutron scat-
tering in the paramagnetic state, and some low-temperature

specific-heat anomalies. While encouraging, many of the
predictions of this theory cannot currently be tested due to
the absence of single-crystal neutron-scattering data.

In this paper, we develop this theory further, in order both
to capture more detailed physical properties of this class of
materials, and to make further predictions which might more
readily be compared to existing and future experiments. We
focus on physics rather than the results observed in the or-
dered state, which has been fairly well characterized in
MnSc2S4. Specifically, we consider details of the magnetic
anisotropy and the magnitude of the local ordered moments
at low temperature. The theory of Ref. 6 was based on a
Heisenberg model, which possesses O�3� �or SU�2�� spin-
rotation symmetry and hence exhibits no preference for the
absolute orientations of the spins themselves in the ordered
state. Experimentally, in MnSc2S4 the spins are observed to
lie on a definite plane. Moreover, the ordering wave vector
describing the axis and pitch of the spiral in real space dis-
plays a “lock-in” behavior at low temperature, in which it
becomes commensurate with the underlying spinel lattice. In
the Heisenberg model, there is no explanation for this lock-
in. We show here that both the choice of spiral plane and the
commensurate lock-in of the spiral wave vector can be un-
derstood by considering magnetic-anisotropy effects. By an
extended phenomenological Landau analysis, we can de-
scribe the magnetic orientation selection across the broader
family of A-site spinels—which has not yet been studied
experimentally—and predict some interesting “spin-flop”
and reorientation effects in applied magnetic fields. We also
consider, as mentioned, the value of the ordered moment,
which experimentally shows a relatively large �for an S
=5 /2 spin� 20% suppression from the classical value. We
show that, despite the large Mn2+ spins, this can actually be
accounted for by quantum fluctuations provided further
neighbor interactions are sufficiently small, due to the en-
hancement of fluctuations by frustration. Finally, we discuss
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the microscopic mechanisms behind the magnetic anisotropy
of these materials, which may arise from both dipolar inter-
actions and spin-orbit effects. In MnSc2S4, we find that spin-
orbit-induced exchange anisotropy is the only one of these
two mechanisms consistent with experimental observations.

We emphasize that though we pay particular attention to
the comparison with MnSc2S4, the A-site spinels comprise a
quite large set of interesting magnetic materials, and the the-
oretical analysis of this paper is formulated in such a way as
to apply to the entire family. It therefore has numerous im-
plications for many materials, and should be quite useful as a
guide to future experiments. Of particular interest is the pos-
sibility of observing ferroelectricity and magnetoelectric ef-
fects in these compounds. Our modeling of magnetic aniso-
tropy contains the essential ingredients for a theory of
magnetically induced ferroelectricity. We present some basic
observations of this type in Sec. VII, at the end of the paper.

The remainder of the paper is organized as follows. In
Sec. II, we describe a phenomenological form of the mag-
netic anisotropy in terms of the order parameter, based on
symmetry constraints, and the resulting ground states. In Sec.
III, we discuss the magnetization process and a spin-flop
transition in a field. Section IV discusses tendency of the
spiral wave vector to lock to commensurate values and asso-
ciated phase transitions. We show in Sec. V how quantum
fluctuations can be included in the theory. Then, in Sec. VI
we consider the possible microscopic sources of the mag-
netic anisotropy, and conclude that in MnSc2S4, it is most
likely dominated by spin-orbit-induced exchange anisotropy.
We conclude in Sec. VII with a summary of results and a
discussion of experimental phenomena, including magneti-
cally induced ferroelectricity. Some technical calculations
are included in Appendixes A and C.

II. SPIRAL SPIN STATE AND SPIN-ROTATIONAL
SYMMETRY BREAKING

A. Heisenberg model and its ground states

A minimal Heisenberg model description for the magne-
tism of these materials was studied in Ref. 6. Here the spins
reside at the spinel A sites, which form a diamond lattice �see
Fig. 1�, composed of the two interpenetrating fcc lattices.
The Hamiltonian, in zero magnetic field, is simply

HHeis =
1

2�
ij

JijSi · S j . �1�

Here we consider classical unit vector spins �Si�=1. We con-
sider coupling between up to third-neighbor diamond sites,
i.e., Jij =J1 ,J2 ,J3 for first-, second-, and third-neighbor sites,
respectively. Though the diamond lattice with only nearest-
neighbor spin exchange J1 has an unfrustrated unique ground
state, the inclusion of additional interactions �second-, third-
nearest neighbor, etc.� rapidly produces frustration. Follow-
ing the logic of Ref. 6, we presume that the first- and second-
nearest-neighbor exchanges, J1 and J2, are dominant, and
treat the third-neighbor coupling J3 as a small �but impor-
tant� degeneracy-breaking perturbation.

Ground states of this Hamiltonian can be found for arbi-
trary Ji by the method of Luttinger and Tisza. They take the
form6 of coplanar spirals

Si
A�B� =

1

2
deik·xi�i�/2 + c.c., �2�

where the order parameter d is a complex three-component
vector satisfying

d · d = 0,

d · d� = 2. �3�

These two constraints, as well as the choice of �, ensure that
the magnitude of each spin is unity, �Si�=1. One has

� = arg� �
i�A,j�B

�Jije
ik·rij	 , �4�

where the sum �� is taken over sites is taken over all sites j
on the B sublattice, with i fixed as an arbitrary A sublattice
site. The physical meaning of d is made clear by solving the
constraint

d = ê1 + iê2 �5�

and defining

ê3 = ê1 � ê2 =
i

2
d � d�. �6�

Here ê1, ê2, and ê3 are three mutually orthogonal unit vec-
tors. The first two span the plane on which the spins reside,
and ê3 is the unique normal to the plane. A phase rotation of
d rotates the spins within the plane, or equivalently translates
the spiral along its axis while leaving the spin plane and
hence ê3 unchanged.

The energy of spiral states of this type is readily evalu-
ated. It is sufficient to linearize in J3, in which case one finds
the energy per unit cell �this is twice the energy per spin�,

EJ�k� = E12�k� + E3�k� , �7�

where E12 and E3 are the contributions from the large J1 and
J2 exchanges and the smaller J3 exchange, respectively. Ex-
plicitly,

E12 = 16J2
��k� −
�J1�
8J2

�2

− 4J2 −
J1

2

4J2
, �8�

FIG. 1. �Color online� The diamond lattice with the first-,
second-, and third-nearest-neighbor couplings J1, J2, and J3,
respectively.
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�E3 = J3
��k�
��k�

, �9�

with

��k� = �cos2kx

4
cos2ky

4
cos2kz

4
+ sin2kx

4
sin2ky

4
sin2kz

4
	1/2

,

��k� = cos kx
1 + 2 cos
ky

2
cos

kz

2
� + 2 cos

kx

2
cos

ky

2

+ cyclic perms. �10�

Treating J3 perturbatively, we first minimize E12. For
J2 / �J1�	1 /8, the minimum occurs for k=0, while for
J2 / �J1��1 /8, it occurs along the surface defined by ��k�
= �J1� /8J2. In the latter case, the third-nearest-neighbor ex-
change breaks the “spiral-surface” degeneracy. A combina-
tion of analytical and numerical arguments �see Appendix A�
determines the selected wave vectors on the spiral surface.
We assume antiferromagnetic J3�0, in which case the mini-
mum energy is realized with a wave vector of the form q
= �q ,q ,k�, where the relation of k to q varies depending upon
the magnitude of J2 /J1. The direction of the wave vector
thereby varies from the �111� to the �110� directions, with an
intermediate �111�� region in which the k is chosen as close
as possible to q since the �111� directions do not intersect the
spiral surface. See Fig. 2 and Appendix A for further details.
We note that this wave vector, determined from the third-
nearest-neighbor exchange J3, is different from the one de-
termined by thermal fluctuations.6

For the specific material MnSc2S4, the magnetic structure
is known from neutron diffraction.7 At low temperature the
ordering wave vector is k=q�3
 /2�1,1 ,0�, and the refine-
ment indicates ferromagnetic J1	0. Comparison to the the-
oretical structure and the measured Curie-Weiss temperature
allows one to constraint the couplings.6 When J3 is very

small, one has J1−10.5K and J28.75K. More generally,
fixing k=3
 /2�1,1 ,0�, one has

J3/�J1� =
− 1 + �4 − 2�2�J2/�J1�

4�2 − 3
. �11�

From this relation, J2 / �J1� varies from 0.88 to 0.94 when
J3 / �J1� is increased from 0.01 to 0.04.

B. Magnetic anisotropy

The Heisenberg model leaves the plane and phase of the
spin spiral undetermined because they can be continuously
rotated using the SU�2� symmetry of the Hamiltonian. In
reality, this symmetry is broken by the crystal lattice and
“spin-orbit” effects �in fact arising from both quantum-
mechanical spin-orbit coupling and dipolar interactions be-
tween spins� that couple spin and spatial rotations. Indeed, in
MnSc2S4, it is known that the spins in the �110� spiral lie on
a �001� plane. This is determined by physics outside the
Heisenberg model. Furthermore, the commensurate magni-
tude of the wave vector—q=q0�1,1 ,0� with q0=3
 /2 ex-
actly within experimental resolution—is also related to an-
isotropy effects. In the Heisenberg model, obtaining this
value of q0 at T=0 requires fine-tuning of the ratio of J2 /J1,
and even with such tuning, the magnitude would generally
deviate at T�0.

To understand these effects, we first adopt a phenomeno-
logical Landau theoretic approach constrained only by sym-
metry. This consists of time-reversal invariance, which re-

verses spins, and the space group Fd3̄m of the spinel lattice.
The full space group is generated by six operations, which
may be expressed in terms of translations Tt by the vector t,
rotations Rn��� by angle � about the n axis, and the inver-
sion I about the origin. In our coordinate system, the gen-
erators Gi are

G1 = T3/4,1/4,1/2 � R001�
� , �12�

G2 = T1/4,1/2,3/4 � R010�
� , �13�

G3 = R111�2


3
	 , �14�

G4 = T3/4,1/4,1/2 � R110�
� , �15�

G5 = I , �16�

G6 = T0,1/2,1/2. �17�

Because the spin is a pseudovector, its transformation under
each of these operations is given by

S�x� → Det�Ô� · Ô−1 · S�Ô · r + t� , �18�

where Ô is the orthogonal matrix giving the rotation or in-

version part of the operation �r→Ô ·r� and t is the transla-
tion vector.

We are interested in the effect of spin-orbit coupling

q3,8

q3,7

q4,9
q2,5

�1
11
�

�111�� �110�

1
8

1
4 0.65 1 2 3 4 J2�J1

0.5

1.

1.5

2.

q�Π

FIG. 2. �Color online� The selected wave vector of the diamond
antiferromagnet for antiferromagnetic J3. We plot q /
 as a function
of J2 /J1, where the ground-state wave vector has the form �q ,q ,k�.
The direction �choice of k� is indicated by the labels �111�, �111��,
and �110�—see text and Appendix A for details—in each of the
regions separated by vertical lines. The first four lowest-order com-
mensurate wave vectors qm,n for which lock-in transitions are ex-
pected are also indicated by labeled dots �see Sec. IV�.
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within the ordered phase of these materials. In this case, the
symmetry is already reduced from that of the full crystal by
the magnetic order. Specifically, we assume an ordered state
of the form predicted by the Heisenberg model, i.e., satisfy-
ing Eq. �2� with k determined to be one of the values se-
lected by J1, J2, and J3 but with d arbitrary up to the con-
straints in Eq. �3�. We seek a Landau free energy as a
function of d. Since we restrict to a fixed k, we should con-
sider only those symmetry operations which leave k invari-
ant �up to inversion�. This is the little group of the wave
vector k. Under each element in this little group, because the
wave vector is invariant, one can define a corresponding
transformation for d, under which the free energy must be
invariant.

We consider the two major regimes of phase space in
which the form of k is simple. For 1 /8	J2 / �J1�	1 /4, we
have k=k�1,1 ,1�. The little group is generated by the trans-
formations G3, G5, and G6 in this case. Under these opera-
tions, the order parameter transforms according to

G3: d1 → d3, d2 → d1, d3 → d2,

G5: d → d�,

G6: d → eikd . �19�

In the case J2 /J1�0.7, one has k=k�1,1 ,0�, for which the
little group is generated instead by G1, G4, G5, and G6. Under
these operations, we find

G1: d → e−ikd�,

G4: d → eik�0 1 0

1 0 0

0 0 1
�d ,

G5: d → d�,

G6: d → eik/2d . �20�

Using these symmetries, we can determine the most gen-
eral allowed form of the free energy at any given order in d,
for each of these two cases. Our focus is on terms which
violate SU�2� symmetry, induced by spin-orbit coupling or
dipolar interactions. As usual within Landau theory, we ex-
pect terms which involve smaller powers of the order param-
eter to be the most important. We therefore consider the lead-
ing quadratic terms other than the trivial �d�2 one. For the
k= �k ,k ,k� states, we find a single nontrivial invariant:

f111�d� � c�d3
��d1 + d2� + d2

��d1
� + d3� + d1

��d2 + d3�� .

�21�

For the wave vector k�1,1 ,0�, the quadratic free energy con-
tains two nontrivial invariants:

f110�d� � c1�d1
�d2 + c.c.� + c2d3

�d3. �22�

These quadratic terms distinguish different planes in
which the spins spiral energetically. We note that both f111

and f110 are invariant under arbitrary phase rotations of the d
fields. Physically, this implies that rotations of the vectors ê1
and ê2 within the plane normal to ê3 cost no energy. There-
fore we expect that these terms may be rewritten in terms of
ê3 alone. This is indeed the case. To do so, it is convenient to
introduce a parametrization of d which solves the constraints
in Eq. �3�:

d = z�����z�, �23�

where we have defined the spinor z,

z = �ei�1 cos �,ei�2 sin �� , �24�

which satisfies �z1�2+ �z2�2=1. Here � is the vector of Pauli
matrices, and �� is the antisymmetric matrix with �12=1. It
is straightforward to show that

ê3 = z
���z�. �25�

By explicit evaluation using Eqs. �23� and �24�, one can
readily show

f111 = c�1 − �e3
x + e3

y + e3
z�2� , �26�

f110 = − 2c1e3
xe3

y + c2��e3
x�2 + �e3

y�2� . �27�

Now the energetically preferred plane for the spins is ap-
parent. They are illustrated in Fig. 3. For k= �k ,k ,k�, the
ground state has ê3= �1,1 ,1� /�3 for c�0, and ê3 · �1,1 ,1�
=0 for c	0 �i.e., in the latter case, the vector ê3 is still free
to rotate anywhere within a plane�. For k= �k ,k ,0�, three
distinct directions of ê3 are possible depending upon the val-
ues of c1 and c2—see Fig. 3 for details.

At this stage it is possible to compare with experimental
results on MnSc2S4. Refined neutron-scattering data in Ref. 7
indicated spiral order of the type discussed here with wave
vector q= �q ,q ,0� and spins aligned within the �001� plane.
We see that the Landau theory indeed captures this order
provided the phenomenological parameters c1 and c2 are
taken to lie within region I of the phase diagram in Fig. 3.
Note that this is not “fine-tuning,” as this region occupies a
finite fraction of the phase diagram. However, it is still inter-

FIG. 3. Directions of the normal ê3 to the plane of spin ordering
selected by magnetic-anisotropy terms in the cases �a� of a �111�
wave vector and �b� of a �110� wave vector. In �a�, the symbol
��111� indicates that any plane with ê3 · �111�=0 is a ground state.
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esting to understand the microscopic reason for the system to
be in region I rather than region II or III. We will return to
this question in Sec. VI.

III. MAGNETIZATION PROCESS

In this section, we consider the evolution of the spin state
in an applied magnetic field. Neglecting magnetic anisotropy,
we may expect a smooth evolution, in which the spins adopt
a canted �conical� configuration with a nonvanishing compo-
nent along the field, and this canting gradually increases until
the spins become fully aligned at saturation. In the presence
of magnetic anisotropy, however, the spins have an intrinsic
preference for particular planes, which, in some field orien-
tations, competes with the tendency of the spins to adapt to
the field. We study these two situations below.

A. Heisenberg model

We first neglect magnetic anisotropy and consider simply
the classical Heisenberg Hamiltonian with an added Zeeman
magnetic field,

HJ,h =
1

2�
i,j

JijSi · S j − �
i

h · Si. �28�

We seek ground states with normalized spins �Si�=1, using
following ansatz:

Si
A�B� =

1

2
dei�k·xi��/2� + c.c. + m , �29�

with the constraints

d · d = 0, �30�

d · m = 0, �31�

1

2
d · d� + m2 = 1. �32�

We now evaluate the energy for these states. It is necessary
to consider ferromagnetic and antiferromagnetic J1 sepa-
rately.

1. Ferromagnetic J1

In the ferromagnetic case, evaluating the energy per unit
cell using the Hamiltonian in Eq. �28�, one obtains

EJ,h
FM =

1

2
EJ�k��d�2 + �m�2EJ�0� − 2h · m . �33�

Here EJ�k� is the energy function for a pure spiral in zero
field, given in Eq. �7�.

This energy function is minimized as follows. Only the
third term is dependent upon the orientation of d and m, and

it is minimized if we choose m=mĥ along the field direction.
Then we must choose, as similarly done in Eq. �5�,

d = �1 − m2�ê1 + iê2� , �34�

with ê3= ê1� ê2= ĥ. This indeed describes a conical spin
state. For fixed m and hence �d�2=2�1−m2�, the energy is

minimized by the wave vector k=q which minimized EJ�k�.
This implies that the wave vector is independent of magnetic
field. Finally, we can minimize over m, which gives

m =
h

hsat
, �35�

which is valid for fields below the saturation field, which in
this ferromagnetic case is

hsat
FM = EJ�0� − EJ�q� � �E . �36�

Here we define �E for later convenience. We see that the
magnetization increases perfectly and linearly up to satura-
tion. The saturation field itself varies with the exchange cou-
plings and in particular J2 /J1 in a nontrivial manner as the
ordering wave vector q varies—see Fig. 4. Since the ground
state itself is ferromagnetic for J2	J1 /8, the saturation field
vanishes in this region.

2. Antiferromagnetic J1

Next consider the case of antiferromagnetic J1. In this
case, the energy function is

EJ,h
AFM =

1

2
EJ�k��d�2 + �EJ�0� + 8J1��m�2 − 2h · m . �37�

The difference from Eq. �33� can be understood as arising
because of the cost 8J1 of flipping the four nearest-neighbor
bonds per site from antiparallel to parallel spin alignment.
Repeating the analysis in Sec. III A 1, we again find a linear
magnetization curve �i.e., Eq. �35��, but with the saturation
field

hsat
AFM = 8J1 + �E . �38�

B. Anisotropy and spin-flop transition

We now turn to the effects of magnetic anisotropy and in
particular the competition between the magnetic field and the
intrinsic preference for the spin-ordering plane. Lacking a
microscopic model for the anisotropy, we cannot reliably ex-
plore the full phase diagram for all fields. However, since we
expect that the anisotropy is relatively weak compared to the
exchange, the portion of phase space in which the field and

0.1 0.2 0.3 0.4 0.5
J2��J1�J2�

5

10

hsat��J1�J2�

FIG. 4. �Color online� Saturation fields hsat / �J1+J2� as a func-
tion of J2 / �J1+J2�, for the ferromagnetic �lower curve� and antifer-
romagnetic �upper curve� cases.

THEORY OF THE ORDERED PHASE IN A-SITE… PHYSICAL REVIEW B 78, 144417 �2008�

144417-5



anisotropy are actually competitive is restricted to small
fields. In this regime, the contribution of the anisotropy to
the energy should be approximately unchanged from that at
zero field. Hence we may model it by the same phenomeno-
logical function given in Sec. II B. That is, we add to the
Heisenberg energy EJ,h the terms f111 and f110, as appropri-
ate.

Let us focus on ferromagnetic J1 with q= �q ,q ,0� for sim-
plicity. The discussion is not significantly modified in the
antiferromagnetic case. The energy function is now

Etot
FM =

1

2
EJ�k��d�2 + �m�2EJ�0� − 2h · m + f110�d� . �39�

In small fields, we may fix k=q the zero-field ordering wave
vector which minimized EJ. We can use Eq. �34�, with how-
ever ê3=m̂ not necessarily parallel to h. Inserting this into
the energy, we find

Etot
FM = EJ�q� + �E�m�2 − 2h · m + f110�ê3 = m̂� , �40�

where f110�ê3� is given in Eq. �27�. Here we have approxi-
mated m�0 in the anisotropy term, since the neglected cor-
rections are of O�m2c1,2�, i.e., small in both the magnetiza-
tion and the anisotropy.

We can now minimize Eq. �40� over the magnitude of the
magnetization at fixed orientation, which gives

m =
h · m̂

�E
, �41�

and the energy, which now depends only upon the orientation
m̂,

Etot
FM�m̂� = −

�h · m̂�2

�E
+ f110�m̂� �42�

up to constants independent of m̂. We caution that in these
expressions, it is possible to take m̂ ·h=0, in which case the
actual magnetization vanishes, but m̂= ê3 still defines the
plane of the spiral.

To determine m̂, we must minimize Eq. �42�. Let us first
consider the special case c1=0 , c2�0. Then we may pre-

sume that m̂ lies on the plane spanned by ẑ and ĥ. Taking the

angle of m̂ with the z axis as � and the angle of ĥ with the z
axis as �h, the energy is

Etot
FM = − c2 cos2� −

h2

�E
cos2�� − �h� , �43�

=− A cos�2�� − �0�� + const, �44�

where

A =
c2

4
�1 + 4h2 + 4h cos 2�h, �45�

�0 =
1

2
acos� 1 + 2h2 cos 2�h

�1 + 4h4 + 4h2 cos 2�h
	 , �46�

with h=h /�c2�E. The angle �0 obviously gives the orienta-
tion of m̂. Interestingly, it is an analytic function of h except

at �h=
 /2, i.e., when the magnetic field is perpendicular to
the �100� axis. As this value of �h is approached, �0�h� be-
comes sharper and approaches a step function: �0�h ;�h

=
 /2�= 

2 ��h−1 /�2�. It is also instructive to plot the mag-

nitude of the magnetization, m�h�. The magnetization jumps
at h=1 /�2 for �h=
 /2 but is otherwise continuous �see Fig.
5�.

Before ending this section, we comment on the range of
validity of the results. First, though we have assumed
throughout the above that c1=0, in fact it is possible to show
that a spin flop �discontinuous jump in the magnetization�
occurs throughout region I of the phase diagram in Fig. 3, in
which �c1�	c2. For brevity, we do not give the �algebraically
involved� argument here. Second, we have assumed a par-
ticular ordering wave vector along the �110� direction. At
zero field, this wave vector is chosen spontaneously from
among the family of equivalent �110� planes �e.g., �101�
etc.�. In the presence of a field, the different wave vectors
will become inequivalent, due to the magnetic-anisotropy
terms in f110. Hence, given enough time, annealing, or field
cycling, the system may choose the lowest free-energy wave
vector among this set in the presence of the field. This is
rather clearly the wave vector which is closest to the field
axis. In this situation, the situation �h=
 /2 is avoided and
the spin flop is avoided. In practice, wave-vector reorienta-
tion is probably sufficiently slow at low temperature to allow
observation of the spin-flop transition.

IV. COMMENSURABILITY EFFECTS

Up to this point, our phenomenological theory leaves the
phase of the spiral �i.e., the phase of d� free. In general, the
different directions within the spiral plane are not equivalent,
and when a full account is taken of spin anisotropy and crys-
tal symmetry, the phase of the spiral may take preferred val-
ues. In this section, we discuss the effects of “pinning” of the
phase and how this leads to a lock-in transition for the spiral
wave vector in some situations.

We will assume the spiral form in Eq. �2�, with some
given q�J2 /J1� chosen to minimize the energy of the Heisen-

0.2 0.4 0.6 0.8 1.0 1.2 1.4 h

0.2

0.4

0.6

0.8

1.0

1.2

1.4

m

0.499Π

0.4Π

0.3Π

0.2Π

0.1Π

Θ0�0

FIG. 5. �Color online� Magnitude of the magnetization m versus
dimensionless field h for �h=0,0.1
 ,0.2
 ,0.3
 ,0.4
 ,0.499

�from the top curve to the bottom curve�.
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berg Hamiltonian. Using the arguments in Secs. II and III,
we can fix the plane of the spiral, defined by the normal
vector ê3. Choosing two arbitrary unit vectors spanning the
plane �ê1� ê2= ê3�, we can then write

d = ms�ê1 + iê2�ei�. �47�

The terms considered up to now do not fix the phase �.
The freedom to choose � is related to translational invari-

ance. In particular, under a translation r→r+a, we have

Ta: � → � − q · a . �48�

Here a can be any Bravais lattice vector. It is sufficient to
consider the primitive lattice vectors a= �0, 1

2 , 1
2 � and permu-

tations. We would like to construct terms in the effective
continuum Hamiltonian or Landau free energy that are in-
variant under Eq. �48� but which depend upon � directly and
not only through its gradients. Moreover, they must also be
periodic in � �since a shift by 2
 leaves d unchanged�. A
general periodic functional of � can be written,

V� = − �
n=1

� � d3r�n cos�n� + �n�r�� , �49�

where the �n are arbitrary coefficients. The �n are arbitrary
slowly varying functions of r, which should be chosen, if
possible, to ensure invariance under Eq. �48�. The functions
should be slowly varying because large gradients of � are
heavily penalized by the Heisenberg Hamiltonian, which fa-
vors constant �. If � varies slowly but �n varies rapidly, then
this term will average rapidly to zero on integration and can
be neglected.

A general choice of function which achieves the desired
invariance is �n�r�=nq ·r�mod 2
�+�n0, with �n0 as a con-
stant. We need to determine which �if any� of these functions
is slowly varying. This occurs if the change in �n�r� on
shifting by a primitive lattice vector is small. By continuity,
this is achieved when q is close to a wave vector for which
�n�r� is constant under such a shift. To achieve constancy,
the nth term should have nq ·a, a multiple of 2
 for all three
primitive vectors a. For this condition to hold for any n, we
require that q ·a be a rational multiple of 2
. We call these
special wave vectors satisfying this condition commensurate.

Let us now specialize to a specific direction of wave vec-
tor of interest. We take q= �q ,q ,0�, corresponding to J2 /J1
�0.7, which is the case appropriate for MnSc2S4. In this
case, for the three primitive translations, we have q ·a
=q /2,q /2,q. Thus the condition for the wave vector to be
commensurate is nq /2=2
m, where n and m are integers.
We assume that the system is close to such a value, i.e.,

q = 4 arccos���J1�
8J2

	 � qm,n �
4
m

n
. �50�

In general, the most important m ,n will be those with the
smallest n since the terms �n may be expected to decay with
increasing n. For J2 /J1�0.7 such that the �q ,q ,0� order is
obtained, we find a number of commensurate wave vectors,
shown in Fig. 2. The smallest q in this set is q=q3,8=3
 /2,
which is the wave vector observed in MnSc2S4. The presence

of these other commensurate wave vectors with smaller n
suggests that other commensurate states might well be found
by varying J2 /J1 by physical or chemical pressure.

Let us fix on the vicinity of one of these wave vectors.
Because the other terms in V� rapidly oscillate, we need only
keep the one involving qm,n:

V� = − �� d3r cos�n� + n�q · r + �n0� , �51�

where �q=q−qm,n, with qm,n= �qm,n ,qm,n ,0�, and we simpli-
fied �n→�. This term favors configurations in which
��=−�q−�n0, which minimize the cosine. Establishment of
a phase gradient, however, costs exchange energy. This can
be seen because from Eqs. �2� and �47�, a nonvanishing gra-
dient �� corresponds to a shift of wave vector. Indeed, the
physical wave vector k for general � is

k = q + �� . �52�

The exchange energy cost of distorting the wave vector from
q to k is, from Eq. �7�,

Hex =� d3r
���

2
������ , �53�

where the tensor stiffness ��� is

� = ��+ �− 0

�− �+ 0

0 0 �3
� . �54�

Here �1=�++�−, �2=�+−�−, and �3 are the stiffnesses along
the principal axes. At zero temperature, they are given by

�1 =
J1

2
−

J1
2

16J2
+ O�J3� ,

�2 =
�8J2 − J1�J1J3

16J2
2 ,

�3 = J3
�128J2

3 − 112J1J2
2 + 20J1

2J2 − J1
3�

8J1J2
2 . �55�

For the most interesting case q�3
 /2, we have �1��2
+�2�J1 /8, �2�J3 /2, and �3���2+1�J3.

We now proceed to analyze the effective Hamiltonian
Heff=Hex+V�. Though we have given these expressions ex-
plicitly at T=0, the general form in Eqs. �51� and �53� holds
at any temperature below the Néel temperature, with Heff
replaced by Feff, the effective free energy, and with renor-
malized parameters ��T� and �i�T�. Moreover, because in
this temperature range the system exhibits magnetic long-
range order, the fluctuations of � are small and bounded, so
that it is sufficient to consider saddle points of the free en-
ergy.

It is convenient to shift variables to �̃=�+�q ·r+�n0 /n.
The free energy is
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Feff =� d3r����

2
���̃���̃ + � · ��̃ − � cos n�̃

+
1

2
�q�����q�� , �56�

with ��=����q�. The last term is independent of �̃ and can
be neglected. One can readily see that

k = qm,n + ��̃ . �57�

The minimum free-energy saddle points of Feff are transla-
tionally invariant along the directions perpendicular to �,
which is along the �110� axis. We therefore define the coor-
dinate x= �x+y� /�2 along the �110� direction, and rewrite
the free energy accordingly,

Feff = A� dx��1

2
��x�̃�2 + ��x�̃ − � cos n�̃� , �58�

where A is the area of the sample transverse to the �110� axis
and �= ���=q−qm,n, and we have dropped the constant term.
It is now evident that � enters only as a boundary term,
which means that the free energy depends upon � only

through the “winding” number Nw= ��̃�x=L�− �̃�x=0�� n
2
 of

the minimum-energy saddle point �across the length L along
the �110� direction�. This allows one to proceed by finding
the saddle-point energy for fixed Nw, and then minimizing
over Nw.

It is useful to consider the cases Nw=0 and Nw= �1. For

Nw=0, the saddle point is uniform, �̃=0 �up to a multiple of
2
 /n�. For Nw= �1, one has a single-soliton solution:

�̃�x� =
4

n
arctan�e�n��/�1�x−x0�� , �59�

where x0 is arbitrary and specifies the location of the center

of the soliton. Note that the soliton width w= 1
n
��1

� . The en-
ergy of this solution, for �=0, is ENw=1−ENw=0=8��1� /n.
When the spacing between solitons is much larger than w,
i.e., L / �Nw��w, the energy of an Nw soliton state is approxi-
mately just �Nw� times this single-soliton energy. Corrections
to this noninteracting soliton approximation arise due to the
overlaps of the exponential tails of the solitons. Defining the
mean soliton density as nw=Nw /L, we may then write the
free-energy density as

f �
8��1�

n
�nw� +

2
�

n
nw + c�nw�e−1/w�nw�, �60�

where c is a positive constant. From Eq. �60�, the minimum
nw can be easily found. For ���	 ��c�=4��1� /
, one has
nw=0, and the wave vector is commensurate. For ���� ��c�,
nw�0, and the wave vector becomes incommensurate. Due
to fluctuations, one expects both � and �1 to decrease
with temperature. Hence the width of the commensurate state
����c�� will decrease with increasing temperature. A sche-
matic phase diagram is shown in Fig. 6.

We see that when J2 /J1 is close �but not too close� to a
value for which the Heisenberg model alone has a commen-
surate spiral solution, there is a lock-in transition on decreas-

ing temperature from an incommensurate to a commensurate
spiral. Within the commensurate �“C” in Fig. 6� phase,
the wave vector is constant and equal to qm,n. This is consis-
tent with observations on MnSc2S4. Commensurate-
incommensurate transitions of this type are well studied, and
the reader interested in details of the associated critical
behavior may find it in various standard texts, for instance,
Ref. 8.

V. QUANTUM FLUCTUATIONS

In this section, we develop a spin-wave theory for the
diamond antiferromagnet, and obtain the leading quantum
corrections to the spin correlations.

A. Holstein-Primakoff bosons

We proceed in the standard way by defining Holstein-
Primakoff bosons in a spin coordinate frame rotated to fol-
low the classical ordered state. The local orthonormal axes
will be defined by

ẑi = Ŝi
cl = Re�deiq·ri� ,

x̂i = − Im�deiq·ri� ,

ŷ = −
i

2
d � d� = ê3. �61�

Note that the ŷ axis is site independent, as it just corresponds
to the normal vector to the spiral plane. The linearized
Holstein-Primakoff transformation is

Si = �S − ni�ẑi + �2S
ai
† �x̂i + iŷ�

2
+ ai

�x̂i − iŷ�
2

� , �62�

which neglects corrections cubic in the canonical ai ,ai
† bo-

son operators. Here ni=ai
†ai as usual. It is convenient to pass

from canonical bosons to “coordinate” and “momentum” op-
erators,

�i =
1
�2

�ai + ai
†�, �i = i

1
�2

�ai
† − ai� . �63�

The spin operator becomes










FIG. 6. Schematic phase diagram showing commensurate �C�
and incommensurate �IC� magnetic phases and the paramagnetic
�PM� phase. The figure is drawn as appropriate for a first-order
magnetic transition line, in which case the width of the commensu-
rate phase remains nonzero on approaching the Néel temperature.
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Si = �S − ni�ẑi + �S��ix̂i + �iŷ� , �64�

and

ni =
�i

2

2
+

�i
2

2
−

1

2
. �65�

B. Spin-wave Hamiltonian

Inserting Eq. �64� into the Heisenberg Hamiltonian, we
obtain terms of O�S2�, O�S3/2�, and O�S�, dropping higher-
order corrections:

HO�S2� =
1

2
S2Jijẑi · ẑ j ,

HO�S3/2� =
S�S

2�2
Jijẑi · ẑi��i + � j� ,

HO�S� =
1

2
SJij��ni + nj�ẑi · ẑ j + �i� jx̂i · x̂ j + �i� j� . �66�

The O�S3/2� term vanishes because the local coordinate
vectors are eigenstates of the exchange matrix, e.g.,

Jijẑ j = Jmẑi, �67�

and x̂i · ẑi=0. Here Jm is the minimum eigenvalue of the ex-
change matrix. The vanishing of the O�S3/2� term is of course
true because we expand about the classical ground state.

Using Eq. �67�, one can further simplify the spin-wave
Hamiltonian. We obtain

HO�S� = − �
i

SJm

2
��i

2 + �i
2� + �

ij

SJij

2
��i� jx̂i · x̂ j + �i� j� ,

�68�

neglecting constant terms which do not affect the correla-
tions.

C. Action

Spin fluctuations are conveniently calculated using the
path-integral approach. The imaginary time action corre-
sponding to Eq. �68� has the usual Berry phase terms de-
scribing the canonical commutation relations of �i and �i,

S = �
�
�HO�S� + �

i

i�i���i� . �69�

Static correlations of �i and � j vanish, so we may consider
the two separately. It is then convenient to integrate out one
of these fields to obtain an effective action for the other. This
gives

S� =
1

2�
ij
�

�
�SK̃ij�i� j +

1

S
�J̃−1�ij���i��� j� , �70�

S� =
1

2�
ij
�

�
�SJ̃ij�i� j +

1

S
�K̃−1�ij���i��� j� , �71�

where

J̃ij = Jij − Jm�ij , �72�

K̃ij = Jijx̂i · x̂ j − Jm�ij . �73�

To diagonalize this, we move to momentum space. Due to
the sublattice structure, we define two components for each
field, �Ak , �Bk and �Ak , �Bk, such that

�i = �
k

�s�i�keik·ri, �74�

�i = �
k

�s�i�keik·ri, �75�

where s�i�=A ,B specifies the diamond sublattice of the site i.
The k integral is defined as �k=vuc�

d3k
�2
�3 , where the integra-

tion domain is the first Brillouin zone, and vuc=1 /4 is the
volume of the real space unit cell. It is convenient to define

�̂k = 
�Ak

�Bk
�, �̂k = 
�Ak

�Bk
� . �76�

The action becomes

S� =
1

2
�

k�

�̂−k,−�
T · GJ�

−1�k,�� · �̂k,�, �77�

S� =
1

2
�

k�

�̂−k,−�
T · GJ �

−1�k,�� · �̂k,�. �78�

Here the frequency integral is ��=� d�
2
 as usual. The matrix

Green’s functions are straightforwardly found but somewhat
cumbersome. The reader interested in the details is referred
to Appendix B. With all these definitions, one can formally
evaluate the equal-time correlation functions:

��i� j� = �
k,�

�G��k,���s�j�s�i�e
ik·�ri−rj�,

��i� j� = �
k,�

�G��k,���s�j�s�i�e
ik·�ri−rj�. �79�

Here the subscripts give the matrix elements of the matrix
Green’s functions.

D. Local moment

Focusing on the case of MnSc2S4, with q
= �3
 /2,3
 /2,0�, we have calculated the reduction in the
sublattice magnetization by numerically evaluating the mo-
mentum integrals in Eq. �79� �the frequency integration can
be done analytically�. See Appendix C for more details of the
calculation. The result for the on-site expectation value is

��i
2� � 0.67, ��i

2� � 1.19, �80�

for J3=0.1K�J1 /100. From this, one obtains �ni��0.43
from Eq. �65�, which is approximately a 20% reduction from
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the classical local moment. As J3 is increased, the moment
increases closer to the classical value, as shown in Fig. 7.

VI. MICROSCOPIC ORIGIN OF MAGNETIC
ANISOTROPY

In Secs. II B and III, we studied the effects of explicit
spin-rotation symmetry breaking on phenomenological
grounds, using only the space-group symmetry of spinel
structure. In this section, we address its microscopic origins.
There are in general two mechanisms of spin-rotation sym-
metry violation in solids: �1� dipole interactions between
electron spins, and �2� spin-orbit coupling. We consider both
in turn and find these lead to somewhat different regimes of
the phenomenological model discussed previously. Interest-
ingly, only the spin-orbit coupling mechanism can explain
the observations in MnSc2S4.

A. Dipolar interactions

The dipole-dipole interaction can be written as

HD =
�0

4

�
i,j

mi · m j

rij
3 −

3mi · rijm j · rij

rij
5 , �81�

where mi=g�BSSi is the dipole moment of the spin i �we
included an explicit factor of S to follow our convention of
unit vector spins�. Using g�2 as expected for an S=5 /2
Mn2+ spin with a half-filled d shell, we obtain a dipolar en-
ergy of interaction between two nearest-neighbor spins of
approximately 0.5K. We note that this is not negligible �es-
pecially when added over many spins within a correlation
volume� but it is certainly weak compared to the basic en-
ergy scale of exchange interactions as estimated from the
Curie-Weiss temperature �CW�−23 K. Therefore we ex-
pect we can treat the dipolar interaction as a weak �but
symmetry-breaking� perturbation on the ordered ground
states of the Heisenberg model.

To this end, we first consider the dipolar interaction clas-
sically by simply inserting the general spiral form of Eq. �29�
into Eq. �81� and evaluating the sum. Because we are only
interested in the dependence of the energy upon the spin
orientation of the spiral, we may drop the first term in Eq.

�81�, which is fully SU�2� invariant. Because the spiral itself
is at a nonzero wave vector, there are no convergence diffi-
culties with the long-range dipolar sum. Choosing the wave
vector q= �q ,q ,0� as in experiment, one indeed finds the
form in Eq. �22� is obtained provided the sum is truncated in
a manner preserving cubic symmetry. We plot the values of
c1 and c2 in Eq. �27� in the physical range of q for 0.7
�J2 /J1	1 in Fig. 8. Throughout this range we find c1�0
and more than three times as large as c2. This favors align-
ment of spins within the plane normal to ê3= �110�. Unfortu-
nately, this is not what is found experimentally.

Several possible complications should be considered be-
fore abandoning dipolar interactions as a mechanism of mag-
netic anisotropy. First, in applying Eq. �81� with mi
=g�BSSi, we have treated the electron spins as point dipoles.
In fact, the electronic wave functions may be somewhat ex-
tended. Through such “covalency,” there may be some spin
density not only in the atomic d orbital of the Mn2+ ion but
also on the neighboring chalcogenide p orbitals. This can be
approximately accounted for by modifying the dipole-
moment distribution associated with a spin accordingly, to be
distributed among with a fractional moment 1− f on the cen-
tral Mn2+ ion and a fraction f /4 on each of the neighboring
four S2− ions. We have carried out such a modified dipolar
sum, and found that it does not substantially alter the results
of the point-dipole model for a reasonable range of param-
eters f .

Another more interesting possibility is that fluctuations
may alter the dipolar energetics. This is not an unreasonable
possibility to consider since, although the classical order-
parameter description is expected to qualitatively �and in-
deed rather quantitatively� capture the long-range order of
the spins, the dipolar energy actually receives large contribu-
tions from very near spins. The latter could exhibit quite
different correlations from well-separated spins which con-
trol the order parameter.

To consider this effect, we have calculated the leading
corrections in 1 /S to the dipolar energy using the spin-wave
formalism described in Sec. V. Since we treat the dipole-
dipole interaction as a perturbation, it is sufficient to consider
the expectation value �HD� in each of the spin-wave ground
states specified by d. To do so, we insert Eq. �64� into HD
and expand to quadratic order in �i and �i, then take the
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J3��J1�
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FIG. 7. �Color online� Reduced magnetic moment Ms as a func-
tion of J3 / �J1�. The solid line is for fixed J2, while the dashed line is
for J2 , J3 satisfying Eq. �11�, so that the wave vector remains equal
to 3
 /2�1,1 ,0�.
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FIG. 8. �Color online� Calculated anisotropy parameters �in ar-
bitrary units� c1 �upper curve� and c2 for q= �q ,q ,0� as a function of
q / �2
�.
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expectation value of the result. The necessary correlators of
�i and �i are calculated by numerical integration of Eq. �79�.
The values obtained are given in Table I. Because the basis
vectors x̂i, ŷ, and ẑi are expressed in terms of d in Eq. �61�,
the result is again an energy function of the form of Eq. �27�,
which contains both the classical expressions for c1 and c2
and their leading quantum corrections. We find that the quan-
tum corrections push the system even further from the ê3
= �110� state, and in any case the magnitude of the correc-
tions is very small compared to the classical values.

Having thus exhausted the possible complications associ-
ated with the dipolar interactions, we conclude that the ob-
served ordered state in MnSc2S4 is inconsistent with a dipo-
lar origin of the magnetic anisotropy. We therefore turn to
spin-orbit effects in Sec. VI B.

B. Exchange anisotropy due to spin-orbit coupling

As we saw in Sec. VI A, dipolar interactions do not ap-
pear to be viable explanation of the orientation of the spin
spiral observed in MnSc2S4. We now consider the second
microscopic origin of magnetic anisotropy, which is spin-
orbit coupling. From the point of view of symmetry, the spi-
nel lattice allows both single-ion �cubic� anisotropy of the
Mn2+ spins and exchange anisotropy. The former is however
expected to be extremely small for Mn2+, which has an ex-
tremely stable and isotropic 3d5 configuration �one may ex-
pect a coupling constant of a few millikelvins�. However,
exchange anisotropy is non-negligible in many Mn magnets.
A microscopic calculation is beyond the scope of this paper,
but we can make a few statements on general grounds. Be-
cause of the closed-shell configuration, these effects are also
expected to be much smaller than the typical exchange inter-
actions �i.e., perturbative in spin-orbit coupling�. However,
they may still be as large as or larger than the dipolar effects.
In MnSc2S4, one may attempt to get some feeling for their
magnitude by comparing the measured effective moment
seen in the Curie law �eff=5.8�B to the theoretical spin-only
value �S=5/2=2�5

2
7
2 �5.92. Given uncertainties in the mea-

surement, we expect no more than a 5–10 % deviation from
the latter �and very possibly much better agreement masked
by experimental complications�. For Mn2+, one expects that
contributions to the g factor �which renormalize the effective
moment� are second order in the spin-orbit coupling. Ex-
change anisotropy occurs at both first order and second or-

der. At first order, one obtains the antisymmetric
Dzyaloshinskii-Moriya �DM� interaction, and at second or-
der, symmetric exchange anisotropy. Thus we would expect
that the DM interactions be of order ���eff−�5/2� /�5/2Jij and
symmetric exchange anisotropy be of order ���eff
−�5/2� /�5/2�Jij.

With this in mind, we consider the allowed form of the
exchange anisotropy as constrained by the space-group sym-
metry of the spinel structure. We first consider nearest-
neighbor bonds. Without loss of generality, take a bond ori-
ented along the �111� axis. DM interaction is forbidden on
this bond because exactly between the two sites is an inver-
sion center �G5 in Eq. �17��. Thus we need only consider
exchange anisotropy. This in turn is strongly constrained by
the C3 rotation symmetry about the �111� axis �G3 in Eq.
�17��. This allows only two separate exchange couplings, for
components parallel and perpendicular to the bond. We can
write the associated exchange Hamiltonian as

Hani
nn = �

�i,j�
J�nij · Sinij · S j + J�nij � Si · nij � S j . �82�

There is a single parameter, J�−J�, which parametrizes the
nearest-neighbor exchange anisotropy.

Next, we consider the exchange anisotropy for next-
nearest neighbors. Here the symmetry is considerably less
constraining since two second neighbors �fcc neighbors� are
not connected by a C3 axis, and there is no inversion center
between them. We have however determined the most gen-
eral exchange Hamiltonian between two such sites invariant
under all operations in Eq. �17�, which is a straightforward
but tedious calculation. There is unfortunately no simple ex-
pression for this Hamiltonian which describes all six second-
neighbor bonds simultaneously. Instead we write the form
for a particular bond, connecting two sites i and j on the “A”
sublattice, separated by the �arbitrarily chosen� Bravais lat-
tice vector rij = �0,− 1

2 , 1
2 �:

Hij
nnn = JaSi

xSj
x + D�Si

xSj
y − Si

ySj
x + Si

xSj
z − Si

zSj
x� + Jb�Si

ySj
z + Si

zSj
y�

+ Jc�Si
ySj

y + Si
zSj

z� . �83�

The full set of Hij for all other pairs of second-neighbor sites
can be obtained by actions of symmetry operations on Eq.
�83�, which thus defines the full next-nearest-neighbor
Hamiltonian Hani

nnn. Note that there are three symmetric ex-
change constants, one linear combination of which repre-
sents the isotropic Heisenberg term, and the other two �Jb
and Ja−Jc� represent symmetric exchange anisotropy. Be-
cause of the absence of an inversion center between two fcc
sites in the spinel, there is an allowed DM term D. However,
the presence of the inversion center implies that the D term
takes the opposite sign for spins on the “B” sublattice.

We can now consider the full exchange-anisotropy Hamil-
tonian, Hani=Hani

nn +Hani
nnn−HHeis, as a perturbation to the

Heisenberg form, and evaluate the energy splittings induced
for a given spiral state specified by q and d, by simply in-
serting Eq. �2� into Hani. As required by symmetry, for q
= �qq0� it again has the form of Eq. �22�. Reading off the
coupling constants, we find

TABLE I. Numerically calculated values of correlations of �i

and �i fields from spin-wave theory, for q= �3
 /2,3
 /2,0�,
J2 /J1= 1

8cos2�
 /8�, and J3 /J1=0.01. Values not specified have neg-
ligible correlations.

rij ��i� j� ��i� j�

0 0.67 1.19

�1 / 2 �1,1 ,0� 0.22 −0.1

1 / 2 ��1,0 , �1� 0.18 −0.3

1 / 4 �1,1 ,−1� −0.25 0.23

−1 / 4 �1,1 ,1� −0.25 0.23
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c1 = �Ja − Jc��1 + �2� + 
1 −
1
�2

��J� − J�� ,

c2 = Jb. �84�

Note that the DM term D does not enter these macroscopic
anisotropy parameters, which is a consequence of its stag-
gered nature on the two diamond sublattices.

Unlike for the dipolar interactions, we see that Eq. �84�
allows essentially arbitrary values of c1 and c2. This means
that in the absence of a microscopic calculation, the
exchange-anisotropy mechanism is not inconsistent with the
observed ordering in MnSc2S4, which as we saw could be
described phenomenologically by a range of choices of c1
and c2. Given the incompatibility of our dipolar results, how-
ever, we tentatively conclude that spin-orbit-induced ex-
change anisotropy is likely at the origin of spin-state selec-
tion in MnSc2S4.

VII. DISCUSSION

A. Summary

In this paper, we have extended the theory of Ref. 6 to
describe the effects of magnetic anisotropy and quantum
fluctuations in frustrated antiferromagnetic A-site spinels.
The theory predicts the possible planes on which spins reside
in the spiral magnetic ground states in zero field, and de-
scribes their evolution with field. In some orientations a spin-
flop transition was found. We described commensurate-
incommensurate transitions which occur below the Néel
temperature when the spiral wave vector locks to one of a set
of specific commensurate values. These effects are all in ac-
cord with observations on the best studied such material,
MnSc2S4. We addressed the reduced static moment seen in
MnSc2S4 by spin-wave calculations, and found that a rela-
tively large reduction can indeed be achieved by quantum
fluctuations due to the frustration-induced degeneracy, de-
spite the large S=5 /2 spin of Mn2+, if one assumes the third-
neighbor exchange J3�0.1. Finally, we derived microscopic
expressions for the most important phenomenological
magnetic-anisotropy parameters, taking into account both
dipole-dipole interactions and spin-orbit effects. In MnSc2S4,
we concluded that the latter are most likely responsible for
the observed magnetic orientation.

B. Experiments

Let us turn now to a further discussion of experiments.
First we discuss existing results and then consider future ex-
periments.

1. Local moment

As mentioned above, from the weight in the magnetic
Bragg peaks seen in Ref. 7 in MnSc2S4, it was estimated that
the local ordered moment Ms�0.8Mcl, where Mcl is the ex-
pected classical static moment for an S=5 /2 spin. In Sec.
V D, we showed that the 17% reduction could perhaps be
due to quantum fluctuations if J3 is sufficiently small. How-
ever, there are a number of reasons to be cautious about this

conclusion. First, at a technical level, it is not clear to us how
large the experimental errors should be considered on this
measurement, which was done in a powder sample. Second,
the data were taken at T=1.5 K, more than half the ordering
temperature Tc=2.3 K, so thermal fluctuations may contrib-
ute to some reduction in the moment.

Finally, there are a number of different effects that have
not been addressed theoretically, which may contribute to the
moment reduction. First, we have neglected disorder, which
is known to be present in the form of inversion—interchange
of A- and B-site atoms of the spinel. Such disorder can dam-
age the spin spiral, reducing the ordered moment even if the
local static moments remain large. The nature of the defects
created and their impact on the ordered moment measured by
neutrons will be discussed in a separate future work.9 A sec-
ond effect that could contribute is a spin-orbit renormaliza-
tion of the g factor. Usually this is small in Mn2+ magnets,
but perhaps this is something worth considering further.

2. Microscopics of anisotropy

As discussed above and in Sec. VI, though dipolar inter-
actions between Mn2+ spins might seem a likely candidate
for the origin of the magnetic anisotropy in MnSc2S4, they
appear to be inconsistent with the observed nature of this
anisotropy. While we can reconcile the existing experiments
with a picture of spin-orbit-induced anisotropy �with some
assumptions�, it is still surprising to us that such effects
would be competitive with dipolar interactions. We believe
the conflict of the latter with the ordered state seen in
MnSc2S4 is a significant one, and found in Sec. VI A that
neither covalency nor quantum fluctuations were likely to
effect a reconciliation.

One possibility we have not considered is the effect of
disorder and granularity. Given the long-range nature of the
dipolar interaction, it is possible that defects created by dis-
order in an ideal spiral can facilitate large changes in the
dipolar energy. This is an interesting issue to be explored in
the future. We emphasize that, although such a mechanism of
anisotropy might be possible, the phenomenological portion
of our theory is entirely independent of these details and is
quite generally valid irrespective of the microscopic physics
of anisotropy.

3. Magnetization experiments

We now turn to future experiments. Of particular interest
would be the development of single crystals. This was al-
ready emphasized in Ref. 6, where predictions were made for
unusual spiral-surface structure in the angle-resolved neutron
structure factor. Based on the results of this paper, we sug-
gest that single crystals are also interesting for the study of
magnetization effects. An obvious suggestion is to look for
signs of the spin-flop transition discussed in Sec. III B. An-
other interesting measurement would be torque magnetom-
etry. As shown in Fig. 9, the angle of the magnetization can
be strongly misaligned with the applied field, which should
lead to a large torque. This is a very sensitive technique that
perhaps does not require crystals as large as those for neutron
scattering.
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C. Ferroelectricity

Our results enable us to discuss magnetically induced fer-
roelectricity in the A-site spinels. This may be expected since
many recent studies, both theoretical and experimental, have
emphasized the relation between spiral spin states and ferro-
electricity. The basis for such a relationship goes back much
earlier to symmetry considerations of Landau and Lifshitz10

and Dzyaloshinskii.11 Several recent studies have pointed out
that very general arguments suggest a simple relationship
between the electric polarization P and the basic parameters
ê3 and q describing the spiral:12–14

P � e3 � q . �85�

Here, as in the text, ê3 is the axis which is perpendicular to
the plane of the spins and q is the wave vector.

The argument leading to Eq. �85� is rather simplified and
actually assumes a sort of “spherical symmetry.” In reality, in
the reduced crystal symmetry environment of the solid, the
actual relation may be somewhat different. Still, for the
A-site spinels, a complete symmetry analysis leads to rather
similar results. In particular, time-reversal symmetry allows a
quadratic term in the d order parameter �which is time-
reversal odd� to couple linearly to P. One therefore expects
the polarization to take the form

P = c���q�d�
�d�. �86�

As argued earlier, all such bilinears in d can be rewritten in
terms of ê3. The coefficients c�� are constrained by crystal
symmetry. Specifically, we require that the left- and right-
hand sides of Eq. �86� transform identically under the little
group which leaves q invariant.

For q= �q ,q ,q�, applying Eq. �19�, we find the form

P111 = c1�e3
x

e3
y

e3
z � + c2�e3

z

e3
x

e3
y � + c3�e3

y

e3
z

e3
x � . �87�

The simplified Eq. �85� corresponds to c1=0, c3=−c2. How-
ever, in general, symmetry allows any values of c1, c2, and
c3.

For q= �q ,q ,0�, using Eq. �20�, we find instead

P110 = c1� e3
z

− e3
z

0
� + c2� 0

0

e3
x − e3

y � . �88�

Equation �85� is the special case c2=−c1.
Given these results, we can make some limited predic-

tions on the ferroelectric polarization in the A-site spinels. In
MnSc2S4, where the ordering wave vector and spiral plane is
known, we can directly apply Eq. �88� without much ambi-
guity. We have ê3= ẑ, which means that there is a spontane-

ous polarization with P along the 11̄0 direction. It would be
interesting to search for this experimentally in single crystals
or for dielectric anomalies related to this in powders. More-
over, the phenomenological theory in Sec. III B, in conjunc-
tion with Eq. �88�, describes how this polarization may be
rotated by an applied field. Again, detailed single-crystal
studies would be enlightening.

For spinels in the regime where q= �q ,q ,q�, the theory is
somewhat less predictive. This is because not only is there
ambiguity in the spiral plane giving ê3 �due to the unknown
constant c in Eq. �26��, but also there are more unknowns in
the relation between the polarization and the spiral plane
�Eq. �87��. A microscopic theory for Eq. �87�, which deter-
mines the ci, is therefore desirable. We imagine one might be
constructed based on the inverse Dzyaloshinskii-Moriya in-
teraction mechanism13 since we have seen that there is a
single DM interaction allowed in the A-site spinels—see Eq.
�83�. The polarization can be very sensitive to details of the
microscopics. For instance, for c�0 in Eq. �26�, we have
ê3= �1,1 ,1� /�3, and according to Eq. �85�, the polarization
vanishes. However, in general this is an artifact of the sim-
plifications in Eq. �85�, and according to Eq. �87�, P�0.
However the orientation of the polarization is precisely con-
trolled by deviations from the naïve Eq. �85�.
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APPENDIX A: SPLITTING OF SPIRAL-SURFACE
DEGENERACY

In this appendix, we give some details on how the
ground-state spirals are determined in the presence of third-
neighbor antiferromagnetic exchange J3. First, we performed
a numerical study of the minima of Eq. �10�, considering
only wave vectors fixed on the spiral surface, i.e., satisfying
��k�=�=1 /8J2. These can be conveniently studied by solv-
ing this condition to give kz in terms of kx and ky:

0.2 0.4 0.6 0.8 1.0 1.2 1.4 h

0.5

1.0

1.5

Θ0

0.499Π

0.4Π

0.3Π

0.2Π

0.1Π

Θ0�0

FIG. 9. �Color online� Ground-state angle �0 of the magnetiza-
tion versus field h for �h=0,0.1
 ,0.2
 ,0.3
 ,0.4
 ,0.499
 �from
the bottom curve to the top curve�.
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kz = � 4 arccos�� �2 − sin2kx

4
sin2ky

4

cos2kx

4
cos2ky

4
− sin2kx

4
sin2ky

4
�

1/2

� .

�A1�

Here the solution �and the surface� exists only when the ar-
gument of the square root is between 0 and 1. Inserting this
value of kz into Eq. �10�, we can obtain the energy on the
surface explicitly. One can then scan linearly along lines de-
fined by k= �q cos � ,q sin � ,k� on the surface and determine
the lowest energy for each �. In every case, the lowest en-
ergy as a function of � is achieved for �=
 /4 �an example is
shown in Fig. 10�, which implies a wave vector of the form
�q ,q ,k� on the surface.

Having determined that the ground-state wave-vector is
always of the �q ,q ,k� form, we need only search this ray for
the ground state. This can be done analytically. One obtains

��q� � ��q,q,kz�q��

=
1

64
�96�8�2 − 3��2 + �256�4 − 13�cos q

+ 2�16�2 + 5�cos 2q − 3 cos 3q + 6�sec2q

2
.

�A2�

This should be evaluated only when such a wave vector ex-
ists on the surface. This condition is

sin2q

4
	 � or sin2q

4
� 1 − � . �A3�

Now it is simple to study the ground states. One can
check that the �q ,q ,q� state, for which q=arccos��8�2

−5� /3�, is always a local minimum of Eq. �A2�. It, however,
only exists when this value is well defined, which requires
��1 /2. This corresponds to 1 /4	J2	1 /2. Indeed, in this
range it is straightforward to show that this is the global
energy minimum.

For J2 sufficiently large, one can readily see that the mini-
mum of Eq. �A2� is instead achieved at the boundary of its
domain of validity, i.e., when the inequalities in Eq. �A3� are
satisfied as equalities. This corresponds to kz�q�=0, i.e., a
�q ,q ,0� state. This eventually ceases to be a minimum for

small enough J2. A choice of such wave vector is q=q0
=4 arcsin��. For this to be a minimum, we need ���q0�
	0. By differentiating Eq. �A2� and evaluating, we find

���q0� = 16���1 − ���3/21 − 6� + 4�2

2� − 1
. �A4�

It is straightforward to show that this is negative provided
�	 �3−�5� /4 or J2�1 / �2�3−�5��, which determined the
domain of the �q ,q ,0� state. In between this and the �q ,q ,q�
state, we necessarily have the �q ,q ,q�� state.

APPENDIX B: SPIN-WAVE GREEN’S FUNCTIONS

In this appendix, we give some details of the spin-wave
Green’s functions. The Green’s functions defined in Eq. �77�
can be written as

GJ��k,�� = �SBJ�k� + �2�SAJ�k��−1�−1, �B1�

GJ ��k,�� = �SAJ�k� + �2�SBJ�k��−1�−1. �B2�

Here we have defined a number of matrices occurring as
Fourier transforms of exchange matrices:

AJ�k� = WJ q,��k�, BJ�k� = WJ 0,0�k� , �B3�

WJ k��k� � 
Wk�,�
11 �k� Wk�,�

12 �k�

Wk�,�
21 �k� Wk�,�

22 �k� � . �B4�

The elements of WJ are conveniently given in terms of the
nearest-neighbor vectors na of the A sites of the diamond
lattice,

n0 =
1

4
�1,1,1�, n1 =

1

4
�1,− 1,− 1� , �B5�

n2 =
1

4
�− 1,1,− 1�, n3 =

1

4
�− 1,− 1,1� . �B6�

Then

Wk�,�
11 �k� = Wk�,�

22 �k�

= − Jm + J2 �
a�b

eik·�na−nb� cos k� · �na − nb� ,

�B7�

Wk�,�
12 �k� = �Wk�,�

21 �k���

= J1�
a

eik·na cos�k� · na + ��

+
1

2
J3 �

a�b�c�a

eik·�na+nb−nc�

�cos�k� · �na + nb − nc� + �� . �B8�

Here the sums range over distinct values of a, b, and c taken
from 0, 1, 2, and 3.

0.5 1.0 1.5
Θ

�5.6

�5.4

�5.2

�5.0

Min��� k��

FIG. 10. �Color online� Minimum value of ��k� for k of the
form k= �q cos � ,q sin � ,k� as a function of �, for J2 /J1=0.4. For
all values of J2 /J1, the minimum value is achieved at �=
 /4.
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APPENDIX C: FREQUENCY INTEGRALS OF GREEN’S
FUNCTIONS AND MOMENTUM INTEGRATION

IN BRILLOUIN ZONE

In this appendix, we give some details of the frequency
integrals of Green’s functions and the transformation to unit
variables xi in momentum space. The frequency integrals of
the correlation functions defined in Eq. �79� can be calcu-
lated analytically using the following relations:

�
�

1

�4 + p1�2 + p2
=

1

2�p1
�p1 + 2�p2

,

�
�

�2

�4 + p1�2 + p2
=

1

2�p1 + 2�p2

.

The frequency integrated Green’s functions GJ�����k� can
be written as

GJ�����k� � 
G����
11 �k� G����

12 �k�

G����
21 �k� G����

22 �k� � , �C1�

with

G�
11�k� = G�

22�k� =
1

C�k�
�BJ11�k� + D�k�AJ11�k�� , �C2�

G�
12�k� = �G�

21�k��� �C3�

=
1

C�k�
�BJ12�k� − D�k�AJ12�k�� .

�C4�

Here AJ�k� is the  matrix element of AJ�k� defined in Eq.
�B3�. Then, C�k� and D�k� are

C�k� � 2�Tr�AJ�k�BJ�k�� + 2�AJ�k�BJ�k�� ,

D�k� ���BJ�k��

�AJ�k��
.

It is natural from Eq. �B1� that GJ ��k� can be expressed GJ��k�
with the changes AJ�k�↔BJ�k�.

The numerical integration of the momentum in the first
Brillouin zone can be easily evaluated using the transforma-
tion to the unit variables in momentum space,

k = b1x1 + b2x2 + b3x3,

bi =
2
a j � ak

ai · �a j � ak�
,

where ai are the fcc primitive vectors, permutations of
1/2�0,1,1�. Hence we can transform the momentum k to unit
variables xi, then the momentum integration in the first Bril-
louin zone can be written as

vuc�
BZ

d3k

�2
�3 → �
i=1

3 ��
0

1

dxi	 . �C5�
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